About Site Map Submit Contact Us Log in | Create an account
Create an account Log In
Average Rating
User Rating:
Visitors Rating:
My rating:

Write review
See full specifications

scripts default iconSimpson's 1/3 and 3/8 rules (Scripts) Publisher's description

SIMPSON: Simpson's rule for quadratic and cubic numerical integration

SIMPSON: Simpson's rule for quadratic and cubic numerical integration
RES = SIMPSON(Y) computes an approximation of the integral of Y via
Simpson's 1/3 rule (with unit spacing). Simpson's 1/3 rule uses
quadratic interpolants for numerical integration. To compute the
integral for spacing different from one, multiply RES by the spacing

For vectors, SIMPSON(Y) is the integral of Y. For matrices, SIMPSON(Y)
is a row vector with the integral over each column. For N-D
arrays, SIMPSON(Y) works across the first non-singleton dimension.

RES = SIMPSON(X,Y) computes the integral of Y with respect to X using
Simpson's 1/3 rule. X and Y must be vectors of the same
length, or X must be a column vector and Y an array whose first
non-singleton dimension is length(X). SIMPSON operates along this
dimension. Note that X must be equally spaced for proper execution of
the 1/3 and 3/8 rules. If X is not equally spaced, the trapezoid rule
(MATLAB's TRAPZ) is recommended.

RES = SIMPSON(X,Y,DIM) or SIMPSON(Y,DIM) integrates across dimension
DIM of Y. The length of X must be the same as size(Y,DIM)).

RES = SIMPSON(X,Y,DIM,RULE) can be used to toggle between Simpson's 1/3
rule and Simpson's 3/8 rule. Simpson's 3/8 rule uses cubic interpolants
to accomplish the numerical integration. If the default value for DIM
is desired, assign an empty matrix.

- RULE options

[DEFAULT] '1/3' Simpson's rule for quadratic interpolants

'3/8' Simpson's rule for cubic interpolants

% Integrate Y = SIN(X)
x = 0:0.2:pi;
y = sin(x);
a = sum(y)*0.2; % Rectangle rule
b = trapz(x,y); % Trapezoid rule
c = simpson(x,y,[],'1/3'); % Simpson's 1/3 rule
d = simpson(x,y,[],'3/8'); % Simpson's 3/8 rule
e = cos(x(1))-cos(x(end)); % Actual integral
fprintf('Rectangle Rule: %.15fn', a)
fprintf('Trapezoid Rule: %.15fn', b)
fprintf('Simpson''s 1/3 Rule: %.15fn', c)
fprintf('Simpson''s 3/8 Rule: %.15fn', d)
fprintf('Actual Integral: %.15fn', e)

% http://math.fullerton.edu/mathews/n2003/simpson38rule/Simpson38RuleMod/Links/Simpson38RuleMod_lnk_2.html
x1 = linspace(0,2,4);
x2 = linspace(0,2,7);
x4 = linspace(0,2,13);
y = @(x) 2+cos(2*sqrt(x));
format long
y1 = y(x1); res1 = simpson(x1,y1,[],'3/8'); disp(res1)
y2 = y(x2); res2 = simpson(x2,y2,[],'3/8'); disp(res2)
y4 = y(x4); res4 = simpson(x4,y4,[],'3/8'); disp(res4)

Class support for inputs X, Y:
float: double, single

See also sum, cumsum, trapz, cumtrapz.

System Requirements:

No special requirements.
Program Release Status: New Release
Program Install Support: Install and Uninstall

Simpson's 1/3 and 3/8 rules (Scripts) Tags:

Click on a tag to find related softwares

Is Simpson's 1/3 and 3/8 rules (Scripts) your software?

Manage your software

Most Popular

scripts default icon ASK, OOK, FSK, BPSK, QPSK, 8PSK modulation 1.1
ASK, OOK, FSK, BPSK, QPSK, 8PSK modulation contain several functions for digital modulation simulation
scripts default icon Simulink Communication Labs 1.1
Simulink Communication Labs allows you to learn communication systems in greater depth.
scripts default icon M-QAM modulation and demodulation 1.1
M-QAM modulation and demodulation is the QAM modulation and demodulation tech.
scripts default icon LZW Compression/Decompression 1.1
LZW Compression/Decompression - Updated LZW compressor and decompressor with reasonable performance
scripts default icon InSPIRE utility to plot a 2D displacement field (Scripts) 1.0
This program plots the deformation field (displace vectors) contained in vector.txt.